Примеры решения задач
Рассмотрим примеры:
«Вы выходите на следующей остановке?» - спросил мальчик женщину в автобусе. «Нет» - ответила она. Сколько информации содержит ответ? - Согласно определению, ответ содержит один бит информации.
Или такой пример. Вы подошли к светофору на пешеходном переходе, когда горел красный свет. Загорелся зелёный. Здесь вы также получили один бит информации.
Итак, мы выяснили, когда сообщение несёт 1 бит информации.
Значит в примерах с кубиком и спортсменами количество информации будет больше. Давайте выясним как измерить это количество.
Рассмотрим пример. Занятия могут состояться в одном из кабинетов, номера которых от одного до шестнадцати. Ученики спросили у учителя: «в каком кабинете будут проходить занятия?» На что учитель им ответил: «Угадайте ответ за четыре вопроса, на которые я могу дать ответ «Да» или «Нет»».
Подумав староста класса задала следующие вопросы:
1 вопрос. Номер кабинета меньше 9? – Да. Ответил учитель
2 вопрос. Номер кабинета больше 4? – Да.
3 вопрос. Номер кабинета чётный? – Нет.
4 вопрос. Номер кабинета 5? – Нет.
Ученики поняли, что занятия состоятся в кабинете номер 7.
Итак, сколько же информации получили ученики?
Первоначально неопределённость знания (количество возможных кабинетов) была равна 16. С ответом на каждый вопрос неопределённость знания уменьшалась в два раза и, следовательно, согласно данному выше определению, передавался 1 бит информации.
Первоначально было 16 вариантов. После первого вопроса осталось 8 вариантов, и ученики получили 1 бит информации.
После 2 вопроса осталось 4 варианта, и ученики получили ещё 1 бит информации.
После 3 вопроса осталось 2 варианта и был получен ещё 1 бит информации.
И, наконец после 4 вопроса, остался 1 вариант и получен ещё 1 бит информации.
То есть мы можем сделать вывод, что ученики получили четыре бит информации.
Такой способ нахождения количества информации, называется методом половинного деления: здесь ответ на каждый заданный вопрос уменьшает неопределённость знания, которая имеется до ответа на этот вопрос, наполовину. Каждый такой ответ несёт 1 бит информации.
Нужно отметить, что методом половинного деления наиболее удобно решать подобные проблемы. Таким способом всегда можно угадать, например, любой из 32 вариантов максимум за 5 вопросов.
Если бы поиск совершался последовательным перебором: «Мы будем заниматься в первом кабинете?» «Нет», «Во втором кабинете?» «Нет» и т. д., то про седьмой кабинет можно было бы узнать после семи вопросов, а про восьмой — после восьми.
Теперь мы можем полученные результаты описать с помощью следующих определений:
• сообщение об одном из двух равновероятных исходов некоторого события несёт 1 бит информации;
• сообщение об одном из четырёх равновероятных исходов некоторого события несёт 2 бита информации;
• сообщение об одном из восьми равновероятных исходов некоторого события несёт 3 бита информации.
Для того чтобы при измерении одной и той же информации получалось одно и то же значение количества информации, необходимо договориться об использовании определённого алфавита.
Пусть N – это количество возможных исходов события или неопределённость знания. Тогда i – это количество информации в сообщении об одном из N результатов.
Вернёмся к нашим примерам.
Обратите внимание, между данными величинами есть связь, которая выражается формулой.
Эта формула вам уже знакома. Также вы с ней встретитесь ещё не раз. Эта формула очень важна, поэтому её называют главной формулой информатики.
Для определения количества информации I, содержащейся в сообщении о том, что произошло одно из N равновероятных событий, нужно решить уравнение.
В математике такое уравнение называется показательным.
Рассмотрим пример. В коробке лежало 64 разноцветных катушки ниток. Сколько информации несёт сообщение о том, что из коробки достали жёлтую катушку?
Рассмотрим следующий пример.
В скором поезде Москва – Санкт-Петербург 8 вагонов, в каждом вагоне 32 места. Нужно определить какое количество информации несёт сообщение о том, что вам купили билет в 6 вагон, 13 место?
Этот пример показывает выполнение закона аддитивности количества информации (правило сложения): количество информации в сообщении одновременно о нескольких результатах независимых друг от друга событий равно сумме количеств информации о каждом событии отдельно.
Итак, мы уже говорили о том, что с формулой 2i = N мы уже встречались на прошлом уроке, когда говорили об алфавитном подходе к измерению информации. Тогда N рассматривалось как мощность алфавита, a i — как информационный вес каждого символа алфавита.
Если допустить, что все символы алфавита появляются в тексте с одинаковой частотой, то есть равновероятно, то информационный вес символа i идентичен количеству информации в сообщении о появлении любого символа в тексте. При этом N — неопределённость знания о том, какой именно символ алфавита должен стоять в данной позиции текста. Это замечание показывает связь между алфавитным и содержательным подходами к измерению информации.
Рассмотрим пример: Требуется угадать задуманное число из диапазона целых чисел, например, от 1 до 100. Чему равно количество информации в сообщении о том, что загаданное число 89?
То есть, если значение N равно целой степени двойки, то показательное уравнение легко решить, а если нет, как в нашем примере. Как поступить в этом случае?
Можно догадаться, что решением уравнения будет дробное число, которое находится между 6 и 7.
В математике существует функция, с помощью которой решаются показательные уравнения. Эта функция называется логарифмом.
Тогда решение показательного уравнения запишется i равно логарифм N по основанию 2. Это означает, что мы должны найти степень, в которую нужно возвести основание, в нашем случае 2, чтобы получить N.
Например, для целых степеней двойки получим:
И так далее.
Значения логарифмов находятся с помощью специальных логарифмических таблиц. Также можно использовать инженерный калькулятор или табличный процессор.
Определим количество информации, полученной из сообщения об угадывании задуманного числа из диапазона от одного до ста, с помощью электронной таблицы.
Количество информации в сообщении о том, что загаданное число 89 приблизительно равно 6,64 бит.
Формула для измерения количества информации была предложена американским учёным-электронщиком Ральфом Хартли, который является одним из основоположников теории информации.
Данный пример показал, что количество информации, определяемое с использованием содержательного подхода, может быть дробной величиной, если же находить информационный объем, путём применения алфавитного подхода, то там может быть только целочисленное значение.
Итоги урока.
В содержательном подходе количество информации, заключённое в сообщении, определяется объёмом знаний, который это сообщение несёт получающему его человеку.
Один бит - это минимальная единица измерения количества информации.
Сообщение, уменьшающее неопределённость знания в два раза, несёт один бит информации.
Для измерения количества информации применяется формула Хартли:
i - ?
Решение:
N = 2i, 16 = 2i, i = 4 бита
Ответ: сообщение содержит 4 бита.
Решение:
Если все шары разного цвета, значит, ни один шар не совпадает по цвету с другими. Следовательно,
Ответ: в корзине 32 шара.